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This Paper is devoted to the diffraction of hydroacoustic waves by 
rectilinear inhomogeneities (cracks, seams of layers of different thick- 
ness) in an elastic layer. The case of low frequencies of the incident 
perturbation is considered here, i.e. of those frequencies for which 
the wavelength in the material of the layer is much greater than the 
thickness of the layer. The introduction of this restriction permits a 
transition from the contact problem for two media (liquid-elastic layer) 
to the boundary value problem for one medium, the liquid, on whose sur- 
face the boundary conditions are obtained on the basis of the vibration 
equations for an infinitely thin elastic plate. The mathematical found- 
ation for the admissibility of such a transition (which is sufficiently 
evident physically) can be found in [XI for a case of similar nature, 
for an elastic layer submerged in a fluid. 

Let us note that. derivatives of the desired function of a higher 

order than the order of the equation itself enter into the boundary con- 
ditions of the problem under consideration. To insure uniqueness in the 
presence of possible discontinuities in the derivatives of the solution 
at the boundary. certain additional requirements at the points of these 
assumed discontinuities (contact conditions in the boundary conditions) 
have to be imposed on the solution of similar problems. Questions con- 
cerning the formulation of these problems are considered in [21. The 
construction of the solutions of certain specific problems can be found 
in L2.31; papers by G.D. Maliuzhinets* and V.Iu. Zavadskii** are devoted 

* To the IV All-Union Conference on Acoustics (Moscow. 1958). 

** To the First Symposium on Wave Diffraction (Odessa. 1960). 
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to the construction of these solutions. The problem Zavadskii solved 

(diffraction of a hydroaeoustic wave from a semi-infinite plate located 
on the surface of a fluid) is most nearly similar to the problem to 
which this paper is devoted. 

Later, only transverse vibrations of the layer will be taken into 
account. The consideration of certain processes 13 associated with 
longitudinal wave propagation in a layer will thus be excluded. As 
Krasil’nikov showed in his report to the Second Symposium on Wave Dif- 
fraction (Gor’kii. 1982). this simplification is justified since the 
energy level of processes associated with the presence of transverse 
waves in the layer dominates those for longitudinal waves in this case. 

A general solution of the two-dimensional stationary problem of plane 
hydroacoustic wave diffraction at the boundary of two elastic plates 
with different elastic characteristics is constructed below for differ- 
ent contact conditions between the plates (seam, crack). 

Notation 

E - Young’s modulus 

o - Poisson modulus 

k - wave number in the fluid 

t - time 

h - thickness of the layer 

p - pressure 

v - velocity of a fluid 
particle 

P - density of the fluid 

p - surface density of the 
plate 

0 - circular frequency 

5 - transverse displacement of 
the plate 

tl - acoustic potential. in the 

fluid 

“0- incident wave 

A - amplitude of the incident 
wave 

Qo- angle at which the incident 
wave moves 

Let two horizontal elastic plates be joined along a certain line and 
cover a half-space filled with fluid from above. A plane monochromatic 
acoustic wave whose direction of propagation is orthogonal to the line 
separating the plates (Fig. 1) arrives from the depths of the fluid. It 
is required to calculate the steady-state wave field which occurs as a 
result of reflection and diffraction of this wave. 

Let us describe the processes in the fluid by the acoustic potential 
U and in the plate by the vertical displacement 5. From mechanics we 
have the known relations 
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hU-lkW= 0, v=gradU, p=pioU 

HE - 
12 (i - 0’) 

A'6 + IW = -p 

- - I+#- - - 

Fig. 1. 

The last relation describes the 

motion of the plate under the effect 
of the bydroacoustic pressure p. 
Since 5 is a point function on the 
plane, the operator A2 should be 

taken over two variables in this expression as contrasted to the three- 
dimensional Laplace operator in the first formula. Let us agree to omit 
the time factor cmiot. 

The location of the x and y axes is given in Fig. 1. 

The z-axis is assumed to be directed along the line separating the 
plates (hence the dependence on the z coordinate vanlshes). As a result, 
the problem of looking for two functions U(X, y) and i(x) is obtained, 
where the former function is continuous in the whole domain of its argu- 
ments (- a3 < x < a, 0 < y < a~) and the second (- a < x < 00, x # 0) may 
have a jump type discontinultv at x = 0. These functions are sought 
under the following requirements. 

1. The function U should satisfy the equation 

a’u ~+~+Pu==o (-W<<<W, O<y<w) 

2. The differences V = II - U,, satisfy the principle of limiting 
absorption. (cl,, = A exp [i( XX - J(&* - x2y)l is the incident wave, 

X = - k cos q~“, q. is the angle at which the incident wave front moves). 

3. The function 5 should satisfy the equation 

ha& - 
12(1 

_-al’) f$ + p&C = - PidJ b, 0) (z > 0) 

h&G 3 + u&c = - pioU (Z, 0) 
12 (1- or’) ad 

(z < 0) 

4. The vertical displacements at the liquid-plate interface are con- 
t inuous 

io6 = &!I 

( ) ay II=0 
(- =J<z<+%z#O) 

5. Certain contact relations which reflect the conditions on the 
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seam of the plates are satisfied for C(X) as x - f 0, for example: 

1) In the case of a seam 

ag (- 0) - d5 t+ 0) (continuity of the 
5 (- 0) = 1; (+ (9, 7 - - ax displacements and 

continuity of flexure) 
A$% sag (- 0) = hbl 8% (+ 0) (continuity of the 

12 (Z - o#) aza 12 (a - 013) az* bending moment) 

%Ea aJC(-Oo) = h% PC t+ 0) 
12 (1 - Q) aa 12 (1 - .rS) AzS 

(continuity of the 
bending stress) 

2) In the case of an infinitely thin crack 

The former of these relations requires the vanishing of a moment 

applied to the plate edges: the latter is the vanishing concentrated 
force on the plate edges. 

To construct the solutions of the mentioned boundary-contact problems 

it is first necessary to satisfy the requirements l-4, ge shall desig- 
nate the expression thus obtained for the potential as the general solu- 
tion. As is seen, it contains four arbitrary constants which are deter- 
mined from the boundary-contact relations on the joint of the plates. 

Let us take a reflection-diffraction perturbation V(X, y), obtained 

by subtraction of the incident wave from the whole field V = [I - II,, as 
the unknown function. 

If the function 5 is eliminated from the boundary conditions 3 and 4. 

the problem reduces to the determination of the continuous function 

V(X, y) (- m < x < m, 0 <y < 03) satisfying the requirements: 

A) ~+$$+EV=o (- M<=<%o<Y<4 

R) The principle of limiting absorption is satisfied for V. 

(f) 

(2) 
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Here 

Let us solve the formulated problem by the method used by Maue in 

the problem of elastic wave diffraction from a half-plane [51. 

Yaliuzhinets L6.71 developed another method suitnble for the solution. 

The Yaue method (a modification of the Wiener-Hopf method) is more 

elementary and very convenient to our purposes. However, it should be 

noted that the Maliuzhinets method should be used when transferring to 

similar problems for angular domains since it is more general for such 

domains. 

Let us separate the desired function V into two continuous components 

v = v1 t v* 

which separately satisfy the requirements (A) and (R) and as a sum, re- 

quirement (C). Let us formulate the boundary conditions for these com- 

ponents as follows: 

Llvl = iA,eiXX (I > O), &VI = 0 (x < 0) (3) 

L1v* = 0 (x > 0)s &us = iA$= (2 < 0) (4) 

Let us use the integral representation 

PI (A) exP [i @I + )/ka - li%y)I / dA. (5) 

to look for the function VI. 

The requirements (A) and (B) for VI are thereby satisfied automatic- 

ally. The radical \J (k’ - A*) is considered positive on the segment 

(-k, k) and the selection of its branch on the remaining sections of 

the integration contour is evident from Fig. 2 on which the contour is 

depicted by the solid line. The slits shown in Fig. 2 by dashes are 

made so that all the singularities of the function pi(A) (except A = x 

about which more will be said below), located in the upper half-plane, 

would be to the right of the upper slit and those located in the lower 

half-plane would be to the left of the lower slit. 

The boundary conditions (3) reduce to a system of integral WUatiOnS 

for p,(h) 
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._ 
.w 

1 
2ni l_ 

(A* Jfk” - ha - &a r/P - I.2 - iv*) p, (A) eihx db = 0 (z < 0) (7) 

T&e factors h4 d(k2 - h2) - 6,d(k2 - h2) - iv, (1 = 1, 2) which grow 
I 

as A5 at infinity generally cause divergence 
left sfdes of equalities (6) and (7). Hence, 

\ 
1, l 5 , 

fmAt 
:“s, 

\ *B 
@P 8 

“_J___'___, 

2 c-k 

'B,' 

Fig. 2. 

00 

s 
f (A) e”“dX (8) 

(whereTf(h)I < AIAIB for 
sufficiently large h) with 
the integral of the same 
function ovef an arbitrary 
contour both of whose ends 
recede to infinity if the 
between the real axis and function f(h) remains analytic in the domain 

this contour. In order for the integral (8) to be made convergent for 
x > 0 because of the exponential, it is sufficient to bend the ends of 
the contour of integration in the upper half-plane in a suitable manner. 
For x < 0 the ends of the contour should be dropped correspondingly. 

of the integrals in the 
these integrals should be 

understood in a certain 
generalized sense. Let us 
agree to identify the inte- 
gral 

To satisfy equality (7) it is now sufficient to demand that the func- 

tion 

be analytic in the lower half-plane. The other integral equation will 
be satisfied if 

is satisfied, where o,(h) is analytic in the upper half-plane if it is 

considered that the contour of integration in (8) bypasses the pole 
h = x from below (Fig. 2). As a result, we arrive at the following 
boundary value problem for an analytic function (Riemann-filbert problem}. 
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Let us look for two functions 0+((A), analytic in the upper ha1 f- 

plane (more accurately, in the domain above the contour in Fig. 2) and 
@_(A), analytic in the lower-half-plane, whose ratio on the real axis 

is: 

@+ m - @+ (x) (I. -,X) 1’ v/k” - k” - 81 fF3j -. iv, 

@- (1) Al A4~ka-Aa-ij~)/ka-11a- iv, 
(11) 

To solve this problem, let us “factor” the functions 

fl (A) = (A* - P) (A’ - 6,) - iv vk” + h” (l = i, 2) 

i.e. let us represent each of them as the product of two factors one of 

which will be analytic in the upper half-plane and the other in the 

lower half-plane. 

Simple algebraic analysis shows that the function fl(A) is analytic 

on a two-sheeted Riemann surface, has ten roots on it of pairwise differ- 

ent signs. Three pairs of these roots are located on the main sheet and 

the two remaining pairs on the other sheet of the Riemann surface. Let 

* PZl f P/1 * Fsz3 (I = 1, 2) denote the roots on the main sheet, 

wherein two real roots f PI1 are included. The principle of limiting 

absorption indicates that the contour of integration in (5) should by- 

pass the positive real root f p[, from below and the negative, from 

above (Fig. 2). This can be seen if k is made slightly complex, i.e. put 

k = k + iE. The root pII is then raised from the real axis into the 

upper ha1 f-plane. 

Now let us separate factors corresponding to the roots 

11 (A) = ‘P[ (A) {I (A2 - B I:) 
E-l 

from the function f[(h). 

The functions q~[(h) which remain after such a separation are analytic 

on the sheet under consideration do not have roots and tend to one at 

infinity. 

Let us write down the Cauchy formula 

lncpl (h) = & -- \ 
’ lncpl (4 dr 

i: 2-k 

Here C is an arbitrary closed contour located on the sheet and en- 

closing the point z = A. Expanding it, we arrive at the formula 
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In Q’r Q-1 = & s In ‘PI (4 
h 

dz+ 1 ln Ql (4 dr 

c- L- s zxc+ 2--h 

where the contours 
integrals converge 
zero at infinity. 

C_ and C+ enclose the slits (Fig. 3). Both improper 
in the usual sense here because In pi tends to 

Hence. the first of the functions 

In Qlf (A) = 2+i s lnrpt (4 d2 

z--1 ’ 
lnq+; (IJ = ’ 

c 
In Ol(4 dz __.-__ 

C+ 
q_ z-_)t 

is analytic outside the contour C+ (and, in particular, in the upper 
half-plane) and the second is analytic in the lower half-plane. As a 
result we obtain the required partition ~1 = we'll-. 

Now formula (11) can be represented as 

The left side of this equality is a function analytic in the upper 
half-plane (more accurately, a function analytic above the contour of 
integration); the first is a function analytic in the lower half-plane. 
These functions transform continuously into each other on the boundary, 
hence, they can be considered as a single function F(A) analytic in the 
whole complex h plane. Let us investigate the behavior of this function 
at infinity. Continuity of this function was stipulated in the defini- 
tion of the function V,(x, y). To guarantee the continuity of this func- 

tion on the x-axis in the representa- 
tion (5). it is sufficient to demand 
the following estimate at infinity 
of the function ~~(1): 

K 
I fi (V I +G p fe>O) 

Xn turn, this leads to the estimate 

Then, according to the Liouville 
theorem, the function F(h) is a poly- 
nomial of fourth degree Fig. 3. 
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The constant e, is evaluated from (12). (13) if we set A = x 

Here Al is the complex conjugate of Al. 

The other constants still remain arbitrary. 

As a result we obtain for the function Yl(x, y) (and ~alOgOUSlY 

V*(x* Y)) 

Here 

and the contour of integration bypaeses the pole A = x from above. Com- 
bining the integrals (15) and (16). we obtain a representation for the 
desired function U as a certain sum: 

* 
w=& s da f bp f d + d &Ax+VkLA’y) & 

91-'Pl+&r 

(17) 

We call the components U, and U2 the reflection-diffraction pertarba- 
tions. The contour of integration in the expression for the former must 
bypass the pole A = x from below and in the latter, from above. These 
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components individually satisfy the Helmholtz equation and the radiation 

condition, and as a sum, the boundary requirement (C). Uoreover, each is 
continuous at the origin together with their derivatives up to the 
fourth order. 

The diffraction perturbation W satisfies the zero boundary conditions 
and includes the discontinuities in the derivatives of U at the origin 
caused by the boundary-contact requirements. A system of four linear 
equations to find the values of the unknown constants a, b, c, d is ob- 
tained easily from the four boundary-contact equalities both for the 
case of a plate seam and for the case of a crack. In the seam case the 
coefficients a, b here turn out to be zero since U has continuous deri- 
vatives to the second order at the origin. 
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